首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46743篇
  免费   4786篇
  国内免费   2514篇
工业技术   54043篇
  2024年   132篇
  2023年   723篇
  2022年   1154篇
  2021年   1571篇
  2020年   1627篇
  2019年   1414篇
  2018年   1370篇
  2017年   1687篇
  2016年   1741篇
  2015年   1695篇
  2014年   2422篇
  2013年   2522篇
  2012年   3207篇
  2011年   3476篇
  2010年   2815篇
  2009年   2865篇
  2008年   2424篇
  2007年   3201篇
  2006年   3093篇
  2005年   2535篇
  2004年   2082篇
  2003年   1789篇
  2002年   1446篇
  2001年   1293篇
  2000年   1133篇
  1999年   957篇
  1998年   789篇
  1997年   651篇
  1996年   509篇
  1995年   410篇
  1994年   338篇
  1993年   296篇
  1992年   192篇
  1991年   159篇
  1990年   94篇
  1989年   63篇
  1988年   49篇
  1987年   28篇
  1986年   13篇
  1985年   14篇
  1984年   14篇
  1983年   5篇
  1982年   12篇
  1980年   16篇
  1979年   8篇
  1977年   1篇
  1967年   1篇
  1957年   1篇
  1956年   1篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
2.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
3.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
4.
《Ceramics International》2022,48(18):25984-25995
Design of architectured composites with layered-ordered structure can solve the strength-toughness mismatch problem of structural materials. In the present study, heterostructure Ti6Al4V/TiAl laminated composite sheets with different thicknesses of interface layer and TiAl composite layer were successfully produced by hot-pressing technology. The effects of interface regulation and laminated structure on their mechanical properties, crack propagation, and fracture behavior were studied. The results indicated that compressive strength of the sheets increased with the decrease in interface thickness. Compressive strength of TiAl composite sheet with thicker composite layer reached 1481.55 MPa at the arrester orientation with sintering holding time of 40 min, which was 25.96% higher than that of the sheet obtained at 120 min. Analysis indicated that the interface area transferred stress through slip bands and through-interface cracks. Compressive strength at the divider orientation reached 1443.06 MPa, which was 45.78% higher than that of the sheet obtained at 120 min. In this case, the interface area transferred stress through slip bands and along-interface cracks. For TiAl composite sheets with thinner composite layer, compressive strength was further improved to 1631.01 MPa and 1594.66 MPa at the arrester and divider orientations with sintering holding time of 40 min, respectively. The ductile metal layer exerted a significant toughening effect. Both interface regulation and laminated structure transformation could enhance the hetero-deformation induced (HDI) strengthening and improve the comprehensive mechanical properties of the composite sheets.  相似文献   
5.
Oxide-based near infrared (IR)-shielding coatings consisting of quarter‐wave stacks of oxygen-deficient tantalum oxide (Ta2O5?x) and silicon oxide (SiO2) multilayers and tin-doped indium oxide (In2O3) (ITO) films with the thicknesses of 200–600 nm can block the passage of IR-A (wavelength: 760–1400 nm) and IR-B (wavelength: 1400–3000 nm) radiation, respectively. In this study, the optical properties and microstructure of these oxide-based IR-shielding coatings were investigated. Transmission electron microscopy images indicated that amorphous Ta2O5?x/amorphous SiO2 multilayers were uniform and dense. ITO films were found to be highly crystalline and show carrier concentrations of up to 7.1 × 1020 cm?3, resulting in the strong IR-B optical absorption due to the plasma excitation of the free carriers. Oxide-based IR-shielding coatings with an ITO thickness of 420 nm were found to have near-IR shielding rates of >90% and an average visible light transmittance of >70%. The effects of IR on human keratinocytes were studied to evaluate the IR-induced photoaging in human skin. It was found that the downregulation of cellular proliferation and the enhancement of senescence-associated β-galactosidase activity induced by IR irradiation were significantly inhibited by oxide-based IR-shielding coatings. Thus, this study provides a facile method for the development of coatings for smart windows with high IR-shielding ability and high visible light transmittance.  相似文献   
6.
7.
A new reverse build-up method is developed to fabricate an economical H2-permeable composite membrane. Sputtering and electroplating are used for the formation of a membrane comprised of a 3.7-μm-thick Pd60Cu40 (wt.%) alloy layer and a 13-μm-thick porous Ni support layer, respectively. The H2-permeation measurements are performed under the flow of a gaseous mixture of H2 and He at 300–320 °C and 50–100 kPa of H2 partial pressure. The H2/He selectivity values exceed 300. The activation energy at 300–320 °C is 10.9 kJ mol−1. The H2 permeability of the membrane is 1.25 × 10−8 mol m−1 s−1 Pa−0.5 at 320 °C after 448 h. The estimated Pd cost of the proposed membrane is approximately 1/8 of the cost for a pure Pd60Cu40 membrane. This study demonstrates that the proposed method allows the facile production of low-cost, Pd-based membranes for H2 separation.  相似文献   
8.
The aim of this work was to investigate the physical and mechanical performance of architectural polyester (PES)–poly(vinyl chloride) (PVC) membranes exposed to different artificial aging conditions. Two commercially available architectural membranes were chosen as research objects. The durability of the PES/PVC fabrics was evaluated by the loss in mechanical performance, scanning electron microscopy, and X-ray diffraction analysis in order to understand the effect of the degradation agents on the surface of the membranes. The mechanical performance of the PES/PVC membranes was unchanged. Scanning electron microscopy images of the tested materials showed initial cracks after aging. The X-ray fluorescence analysis showed that at the time of aging, the amount of Cl and Si decreased slightly, while Ti decreased by half, and Ca by volume increased twice. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47523.  相似文献   
9.
In this study, AA7075 aluminum matrix composites reinforced with the combination of SiC, Al2O3, and B4C particles were fabricated by the liquid metal infiltration method. The effects of the relative ratio of B4C and Al2O3 particles on the microstructural, wear, and corrosion features of the composite samples were analyzed using XRD, light metal microscopy, SEM, EDS, Brinell hardness, ball-on-disc type tribometer, and potentiodynamic polarization devices. It was determined that infiltration occurred more successfully, and homogenously distributed particles with reduced porosity were obtained as the amount of Al2O3 increased. Worn surface studies revealed that the specimens were predominantly worn by abrasion and adhesion. The increase in B4C/Al2O3 ratio caused a decrease in the hardness and wear strength, whereas it increased the corrosion resistance.  相似文献   
10.
In this study the effects of high temperature and moisture on the impact damage resistance and mechanical strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates were exposed to either a 1050°C isothermal furnace-based environment for 30 consecutive days at 6 h a day, or 95% relative humidity environment for 13 consecutive days at 67°C. Low velocity impact, tensile and short beam strength tests were performed on both ambient and environmentally conditioned laminates and damage was characterized using a combination of non-destructive and destructive techniques. High temperature and humidity environmental exposure adversely affected the impact resistance of the composite laminates. For all the environments, planar internal damage area was greater than the back side dent area, which in turn was greater than the impactor side dent area. Evidence of environmental embrittlement through a stiffer tensile response was noted for the high temperature exposed laminates while the short beam strength tests showed greater propensity for interlaminar shear failure in the moisture exposed laminates. Destructive evaluations exposed larger, more pronounced delaminations in the environmentally conditioned laminates in comparison to the ambient ones. External damage metrics of the impactor side dent depth and area directly influenced the post-impact tensile strength of the laminates while no such trend between internal damage area and residual strength could be ascertained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号